首页> 外文OA文献 >Many-body microhydrodynamics of colloidal particles with active boundary layers
【2h】

Many-body microhydrodynamics of colloidal particles with active boundary layers

机译:具有活性边界的胶体颗粒的多体微流体动力学   层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Colloidal particles with active boundary layers - regions surrounding theparticles where nonequilibrium processes produce large velocity gradients - arecommon in many physical, chemical and biological contexts. The velocity orstress at the edge of the boundary layer determines the exterior fluid flowand, hence, the many-body interparticle hydrodynamic interaction. Here, wepresent a method to compute the many-body hydrodynamic interaction between $N$spherical active particles induced by their exterior microhydrodynamic flow.First, we use a boundary integral representation of the Stokes equation toeliminate bulk fluid degrees of freedom. Then, we expand the boundaryvelocities and tractions of the integral representation in aninfinite-dimensional basis of tensorial spherical harmonics and, on enforcingboundary conditions in a weak sense on the surface of each particle, obtain asystem of linear algebraic equations for the unknown expansion coefficients.The truncation of the infinite series, fixed by the degree of accuracyrequired, yields a finite linear system that can be solved accurately andefficiently by iterative methods. The solution linearly relates the unknownrigid body motion to the known values of the expansion coefficients, motivatingthe introduction of propulsion matrices. These matrices completely characterizehydrodynamic interactions in active suspensions just as mobility matricescompletely characterize hydrodynamic interactions in passive suspensions. Thereduction in the dimensionality of the problem, from a three-dimensionalpartial differential equation to a two-dimensional integral equation, allowsfor dynamic simulations of hundreds of thousands of active particles onmulti-core computational architectures.
机译:具有活性边界层的胶体粒子-粒子周围的区域,非平衡过程会产生较大的速度梯度-在许多物理,化学和生物学环境中都很常见。边界层边缘的速度或应力决定了外部流体的流动,从而决定了多体粒子间的流体动力相互作用。在这里,我们提出一种方法来计算由外部微流体动力流引起的$ N $球形活性颗粒之间的多体流体动力学相互作用。首先,我们使用Stokes方程的边界积分表示来消除体液的自由度。然后,我们在张量球谐函数的无穷维基础上扩展积分表示的边界速度和牵引力,并在每个粒子表面上在弱意义上强制执行边界条件时,获得了未知膨胀系数的线性代数方程组。无限级的截断(由所需的精确度确定)产生了一个有限的线性系统,该系统可以通过迭代方法准确而有效地求解。该解决方案使未知刚体运动与膨胀系数的已知值线性相关,从而推动了推进矩阵的引入。这些矩阵完全表征了主动悬架中的流体动力相互作用,就像流动性矩阵完全表征了被动悬架中的流体动力相互作用一样。从三维偏微分方程到二维积分方程,问题的维数减少,可以在多核计算体系结构上动态模拟成千上万个活动粒子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号